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- ABSTRACT

We report numerical calculations of the heating of charged -
particles by turbulent electric fields. The fields are given, ”3» et
and are not required to be self-consistently supported by the -2 ~7 =
particles. Three types of wave spectra are treated, each of '
which is analytically unmanageable: (1) many waves, constant
phases and velocities; (2) one wave, randomly interrupted phase;

(] L

(3) one wave, slowly varying wave number at constant frequency. ole> 2 e

Large particle energization is found in the last two cases. - . i P -
In all three cases, the results can be qualitatively understood %2 ——
by elementary arguments related to particle "trapping." 5% PP
Pt
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field correlations in the Ghz range2 have improved
Recent experiments on turbulent heating devicest the chances for being able to do this.
have directed attention to details of the processes

I. INTRODUCTION

It appears

to us hopeless to attempt a comprehensive theory

by which rapidly fluctuating electric fields trans- of any turbulent heating--analytical or numerical.

fer energy to the thermal motions of a plasma.

II. FORMILATION E
The plasma in these devices is usually far from HILATION OF THE PROBLEM

the state in which theorists like to idealize it We now remark on the formulation of the heating
(uniform, quiescent, noise-free, weakly perturbed, problem for turbulent electric fields.’ We shall
etc.). It is not obvious that analytical attacks on work throughout with idealized one-dimensional
such a plasma are of any use. The situation is at "particles" and fields.
least as complicated as in aerodynamic turbulence The equation of motion of a particle is
theory, where agreed-upon analytical results are ®(t) = G(t) = e(t) (1)
rare. So far, the linearized Vlasov industry has
shed little light on turbulent heating of a plasma. where £(t) = (g/m)E(x(t),t). The position and

In an effort to understand the turbulent velocity aré x(t), v(t), the charge-to-mass ratio is
heating process we have done computations with an q/m, and E(x,t) is the electric field as a function
IBM 360/65 on charged particle heating by a super- of x and t. Equation (1) is not generally soluble

position of electrostatic waves. The wave spectrum unless E(x,t) becomes time-independent in some

is assumed known, one of the input parameters of the ‘coordinate frame.

problem along with the initial phase space locations The trajectory of one particle is often of

of the particles. It has seemed advisable at this little interest, and our attention may be directed

stage artificially to separate the orbit theory to one of two kinds of ensemble averages:

from the self-consistent aspects of the problem, and (1) Averages over an ensemble of initial co-

discard the latter. ordinates x(0), v(0) for one given E(x,t).

Our objective has been to achieve a physical (2) Averages over an ensemble of electric

understanding of the way given spectra heat (or fail fields for one given initial x(0), v{0). For con-

to heat) an assemblage of charged particles. Once venience, we may choose x(0) = 0.

it is determined what sorts of spectra heat most The two averages are not the same, and it has

efficiently, the next step would appear to be to seemed to us generally preferable to compute the

attempt to tailor these spectra in laboratory de- -second. 3

vices. Recently developed techniques of measuring The electric field is generally expressed as
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E(x,t) = [; By cos (k; x - u;t + ¢;), (2)
with given field amplitudes E;, wave numbers k; and
phases ¢;. The ensemble averaging is over the
phases ¢;, and is indicated by a bracket < >. The
Ei’ ki’ ws s x(0) are not averaged over, as a rule.
The average is therefore over what happens to ident-.
ical particles released in plasmas with identical
spectra, but with phases which differ from plasma to
plasma.

We are interested in two quantities more than
the others, the average velocity <v>, and the average
spread in velocities which we call the kinetie
"temperature" <(v—<v>)2>i The latter always starts
out at zero, and one way of formulating the goals of
the turbulent heating problem is to make <(v-<v>)2>
as large as possible as fast as possible with a

fixed amount of field energy available.

III. RESULTS
We usually work in dimensionlessu variables

for which the equations of motion take the form

x(t) @ v(t)

N
v(t) = -_z €; cos (ki x(t) - wyt + ¢i). (3)
i=1 i
We turn now to a summary of some of the results
of the numerical solution to Egs. (3), first making
some general remarks which are useful in inter-

preting the results.
A. ONE WAVE, CONSTANT PHASE

A useful concept has proved to be the "trapping
width" of a wave. The system (3) is only analyti-
cally solvable for the case N=1, as is well known.
The solution is expressible in terms of Jacobian
elliptic functions, and the properties of the solu-
tion can be summarized as follows. For v(0) far
from the phase velocity wl/kl, the orbit x(t), v(t)
is only slightly deflected from its free flight
value x(0) + tv(0),v(0). Those particles whose orbits
are greatly modified are thogs whose velocities lie
within a distancefz 2 /E17Ez- of wl/kl. We call
this range of velocity space the '"trapping range" of
the wave. In the frame which moves with velocity
wl/kl (theQ"wave frame"), the particle's energy is
w = (v(0))“/2 - (sl/kl) cos ¢l. If w < el/kl, the
particle is "trapped," i.e., its orbit has turning
points in velocity in the wave frame. Trapped

particles oscillate in velocity in the wave frame
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with a_period which ranges from the "trapping time"
2w/¢klsl to infinity when w goes from its minimum

valu&é to el/kl. The maximum velocity increment a

_ particle can acquire from a single wave is of the

order of HVel/kl.

B. SEVERAL WAVES, CONSTANT PHASES

This simple interpretation of particle trapping
fails when N>1, but it is still useful to think of

the waves as occupying a "trapping range,"

w, €. <Y . /E;
= -2/ =5 v =+27/ > in the velocity space,
ki ki ki ki

By repeated numerical solution of Egs. (3), we have
established that particles will generally make long
hops in velocity space if, and only if, the two
regions of velocity space are connected by the over-
lapping trapping widths of waves.

One immediate consequence of this is that many
little waves will heat the particles hotter than
one big one, given a fixed amount of total wave
This is because, as the number of waves
increases, the amplitude falls off as I\I»li

trapping width falls off as N—%. The total width

energy.

, S0 the

of velocity that can be spanned by the waves goes
as NNF = iR,

This effect is illustrated in Fig. 1, where
<(v-<v>)2> is plotted against time for one wave and

ten waves, with the same total value of

N

z ei. The particles are heated about a factor of
i=1
three hotter in the ten wave case.

Discussion of the Constant Phase Cases

Beyond the simple conclusion that particles
will only go where there are waves in velocity
space, there have been few surprises.

We have not had noteworthy success in fitting
the results of the computations with such analytical
theory as there is for this problem.5 For example,

the Fokker-Planck equation

Af(v,t) _ 3 ]
e [ D(v,t) £ f(v,t)],, (%)

where f(v,t) is the velocity distribution function
and D(v,t) is the diffusion coefficient

D(v,t) = n }, ei §(k,v - w;) >0, (s)

has few analytical consequences which can be



extracted, and §uch consequences as it does have
apply to the case where k is a continuously-
distributed, rather than a discrete, variable {(such
as the development of a "plateau" in the distribu-
tion f3; it is worth remarking that Eqs. (4) and (5)
do not predict the development of a plateau). The
methods used to derive (#) and (5) are intrinsically
incapable of treating situations in which the wave
velocity spacing is comparable to, or greater than,
the trapping widths of the waves.

An analytical framework capable of acting as a
good zeroth approximation to this situation would be
very welcome. We have experimented some with a

master equation approach, where

dni(t) .
—5— = zj Aji nj(t) - Aij ni(t) . (6)

Here, ni(t) is the number of particles within the
trapping range of the ith wave, and Aij is a tran-
sition probability per unit time for the particle's
jumping from wave i to wave j. This approach still
looks hopeful to us, but we have no quantitative

success to report.

C. ONE WAVE, RANDOMLY VARYING PHASE

In diagnosing turbulent heating experiments,
one frequently obtains probe signals which represent
coherent oscillations for several cycles, then are
interrupted in an apparently random way, and con-
tinue to reappear and disappear. We have attempted

to simulate this type of oscillation by setting
x(t) = V(t) @ -e cos [k, x(t) - w t + 6(£)1, (7)

where €, ko, and w, are again constants, but ¢(t) is
a random number modulo 27 which jumps to a new value
whenever t = nt, n = 1, 2, 3, ..., with a fixed
interval of constancy 1. The heating which results
from Eq. (7) turns out to be more efficient, as well
as theoretically more interesting, than the heating
in the constant phase cases.

In Fig. 2, we see the temperature vs. time for
different intervals of 1. The ensemble average is
over a hundred initial values of the phases. The
trapping width 4/27?;.13 about 4 for all cases. The
heating to be expected for ¢(t) = a constant for all
t would give a temperature of about unity. The

temperature reached for finite 1 is clearly greater

than that. (The constant—phése limit is 1 = =,)
Can we make a qualitative connection between

the heating expected here and the well-understood

results of the previous (constant-phase) cases?

The answer is yes, if we characterize the electric

field by its auto-correlation func'tion,6
<C(ax,At)> =
L/2 T/2
2 1in %ﬁ_ J %£<§§§os [kox - wot + 6(1)]
L » =
T > -L/2 =T/2

+ cos [ko(x;Ax) - wo(t+At) + ¢(t+At)]:2>

= dk | dw S(k,w) exp [i(kAx - wAt)]. (8)

(Double brackets mean an ensemble average over
initial phases.)

The spectral density S(k,w) is proportional to
the average energy density per unit wave number per
unit frequency in the electrostatic wave field. We
can think of those points in k,w space where S(k,w)
is large as being the points where the waves are,
on the average.

For. constant phase {1 = ®), we have
S{k,w) = Sm(k,w)

9 (9a)
= 5 [8(k-k) 8 (w-wg) + 8 (ktky) 8 (wtug)].

Thus the only waves are at ko’ Wy and 'kp’ ~0y.
For finite 1, on the other hand,

S(k,w) = EE_. §(k - ko) Sinz((g - wo)T/2)
(w - mo)

2mT

§(k + ko) sinz((w + we)t/2)

(o + wo)2

.

(9b)

Though for 1 + =, S(k,w)——:8, (k,u) uniformly,

we see that for finite 1, the effect is that of

. adding a distribution of waves whose wavelength is

still 2w/k,, but which are continuocusly distributed
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in frequency about w B * w,, over a region of w-
space whose width can be estimated as Aw Vv 2n/r.
This width corresponds to a spread in phase veloci-
ties of order Aw/k, " 2w/kyt, which ranges from
about 0.5 for T = B4 to 30 for 1 = 1.

It is reasonable to expect the particle heating.

to increase in magnitude as the width of the effec-
tive phase velocity spectrum increases (T decreases),
and this is apparently what happens in Fig. 2. A
countervailing effect is that as t decreases, the
maximum value of the additional term in Eq. (9b)
decreases, thus weakening the overall field strength
of the aéditional spectrum. This means a slower
migration of particles over the region of velocity
space occupied by w/k, or a longer time required to
attain the maximum heéting. This is apparently
what has occurred for 1 = 1 in Fig. 2, where the
computer program ceases to be accurate at a time
when the temperature is far from its maximum value.
In Fig. 3, we show the velocity space distri-
bution function at t = 300 for each of the values
of 1. The distribution of v - <v> becomes approxi-
mately symmetrical, as it does for the constant-

phase cases.

D. ONE WAVE, DECREASING WAVE NUMBER7’8

An important practical situation is that in
which an electrostatic wave propagates into a region
of increasing density at constant frequency, with
an attendant decrease of wave number. This situa-

tion can be simulated by the equation

X\ 6 = e cos [k(x)x - wt + ¢1, (10)

where k(x) is a slowly decreasing function of x.
For definiteness, we chose k(x) = (l+ax)—l kg, where
a is a positive constant much less than one.

Swift’ has suggested that since the local phase
velocity of the electric field in Eq. (10) increases
slowly to the right, an initially trapped right-
travelling particle may be able to ride the wave up
in velocity, thereby being accelerated to a much
higher energy for given e than could be attained by
k = const. We now show how numerical calculations
show this conjecture to be correct.

Figure 4 shows the velocity as a function of
time seen by a single particle, to illustrate this

effect. The solid line is the velocity of the
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particle; the broken line is w(k + xdk/dx)’l, which
is the instantaneous phase velocity seen by the

particle at position x. Not much happens to the

. particle before it becomes "trapped" between t = 100

and 200, and not much happens to it after it becomes
"untrapped" around t = 800, but while it is trapped,
it acquires a factor of 16 in energy from a field
strength € that would produce a net energy gain of
at most v 1.5 if k were constant.

Figure 5 shows the velocity distribution as
histograms for various values of a. The limit a B 0
is the case of k B const. It will be clear that not
all the particles will ride the wave up in energy,
and those that become "untrapped" experience no
significant acceleration thereafter. The smaller o
is, the longer the particle can remain trapped,
because small o implies a very gentle acceleration
of the phase velocity, and the trapped particles'
behavior is essentially adiabatic. This accounts
for the more efficient acceleration in the small
a cases.

This method of producing a few very energetic
particles with small field strengths is believed by

us to have geophysical implications.8

IV. SUGGESTIONS FOR THE FUTURE

Two directions appear to be fruitful for gener-
alizing these numerical techniques. They are
closely related.

(1) Generalization to more than one dimension
(two dimensions are probably more feasible than
three).

(2) Inclusion of d.c. magnetic fields in the
equations of motion.

One important effect in the two and three
dimensional cases is connected with the fact that
the condition for strong interaction of a wave and
a particle is much less restrictive.? It is that

w¥k -9,

rather than w ¥ kv. This enables particles to be
accelerated to much greater velocities than the
maximum value of m/li]. For the one dimensional
case, the maximum value of w/k always sets the upper
limit on speeds to which particles can be acceler-
ated. B

. Secondly, the addition of the possibility of

cyclotron resonancel® to the trapping acceleration



described here will greatly enhance the possibili-
ties for particle orbits to differ greatly from
their conventional perturbation-theroretic values.
It does seem important at this stage to try to " 3.
keep the problems as simple and easily understand-
able as possible, and to try to keep them as tied to
concrete experiments as possible. For this, more
electric-field diagnostics (spectral densities, 4,
autocorrelations, etc.) are needed than are now
available on most of the turbulence experiments. It
would be easy for theory and experiment to separate
at this point just as they have for other types of
plasma machines, with the same resulting obscurity

and confusion.
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Figure 1 ' Temperature as a function of time for N = 1 and N = 10. 1In-

both cases, v(0) = 4.5 initially for all particles and

N

z e: = 0,025. In the one-wave case, k = 0,18, w = 1.052,
i=1

and € = 0.1581, For the ten-wave case, k ranges from 0.13 to
0.25, w ranges from 1,026 to 1,110, and ¢ = 0,05 for all ten

waves. Ensemble average is over 100 "particles",
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NUMBER OF PARTICLES
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Figure 2 Temperature as a function of time for N = 1 and the phase ¢(t)

Lo
280

a random variable, In all cases, k = 0.18, w = 1.052, and
¢ = 0.1581. The only quantity being varied is t, the interval
over which ¢(t) remains constant before it is interrupted.

Ensemble average is over 100 "particles",
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Figure 3 The number of "particles" per unit velocity range at time
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t = 300 vs. velocity, "1 = «" and "ten waves" graphs correspond
to the N =1 and N = 10 cases, respectively, of Figure 1. The
finite 1 graphs correspond to the respective cases in Figure 2.
The arrows along the yelocity axes indicate the boundaries of

the trapping ranges in the constant phase cases.
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